$\pi^{0} p$ and $\pi^{+} n$ photoproduction beam asymmetries from the proton

Michael Dugger* Arizona State University

Several quark models of baryon masses

- ✦ Non-relativistic quark model
- ✦ Relativised quark model
- ✦ Goldstone-boson exchange
- ✦ Diquark and collective models
- ✦ Instanton-induced interactions
- ✦ Flux-tube models

Big Puzzle: Models predict too many resonance states!

Isospin overlaps for reactions involving π^0 and π^+

- Differing isospin overlaps of N^* and Δ^+ for the $\pi^0 p$ and $\pi^+ n$ final states
- The $\pi^0 p$ and $\pi^+ n$ final states can help distinguish between the Δ and N^*

$$\begin{split} & \int_{-1}^{+} & N^{*} \\ & \downarrow \\ & & \downarrow \\ \pi^{0} + p : \sqrt{2/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle - \sqrt{1/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle \\ & \pi^{+} + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle \\ \end{split}$$

Helicity amplitudes and observables

Spin observable	Helicity representation	Differential cross section
$\tilde{\Omega}^1 \equiv \mathcal{I}(\theta)$ $\tilde{\Omega}^4 \equiv \tilde{\Sigma}$ $\tilde{\Omega}^{10} \equiv -\tilde{T}$	$\frac{1}{2}(H_1 ^2 + H_2 ^2 + H_3 ^2 + H_4 ^2) \\ \operatorname{Re}(-H_1H_4^* + H_2H_3^*) \\ \operatorname{Im}(H_1H_2^* + H_2H_4^*) = 0$	Beam polarization
$ \tilde{\Omega}^{12} \equiv \tilde{P} $	$\operatorname{Im}(-H_1H_3^* - H_2H_4^*)$	Target asymmetry
$\tilde{\Omega}^3 \equiv \check{G}$ $\tilde{\Omega}^5 \equiv \check{H}$ $\tilde{\Omega}^9 \equiv \check{E}$ $\check{\Omega}^{11} \equiv \check{F}$	$\begin{split} & \operatorname{Im}(H_1H_4^*-H_3H_2^*) \\ & \operatorname{Im}(-H_2H_4^*+H_1H_3^*) \\ & \frac{1}{2}(H_1 ^2- H_2 ^2+ H_3 ^2- H_4 ^2) \\ & \operatorname{Re}(-H_2H_1^*-H_4H_3^*) \end{split}$	Recoil polarization
$ \tilde{\Omega}^{14} \equiv \tilde{O}_x \tilde{\Omega}^7 \equiv -\tilde{O}_z \tilde{\Omega}^{16} \equiv -\tilde{C}_x \tilde{O}^2 $	$Im(-H_2H_1^* + H_4H_3^*)$ $Im(H_1H_4^* - H_2H_3^*)$ $Re(H_2H_4^* + H_1H_3^*)$ $I(H_1H_2^* + H_1H_3^*)$	Double polarization observables
$\begin{split} \Omega^2 &\equiv -C_z \\ \check{\Omega}^6 &\equiv -\check{T}_z \\ \check{\Omega}^{13} &\equiv -\check{T}_z \end{split}$	$\frac{1}{2}(H_1 ^2 + H_2 ^2 - H_3 ^2 - H_4 ^2)$ $\operatorname{Re}(-H_1H_4^* - H_2H_3^*)$ $\operatorname{Re}(-H_1H_2^* + H_4H_3^*)$	Need at least 4 of the double observables for a "complete experiment"
$ \tilde{\Omega}^8 \equiv \check{L}_x $ $ \tilde{\Omega}^{15} \equiv \check{L}_z $	$\begin{array}{c} \operatorname{Re}(H_2H_4^*-H_1H_3^*) \\ \frac{1}{2}(- H_1 ^2+ H_2 ^2+ H_3 ^2- H_4 ^2) \end{array}$	experiment

Finding missing resonances requires lots of different observables. Cross sections are not enough.

Experimental facility

The Thomas Jefferson National Accelerator Facility (Jefferson Laboratory = JLab).

Continuous Electron Beam Accelerator Facility (CEBAF)

✦ Racetrack design

CLAS

✦ Good for charged particles

✦ Large acceptance

Experimental capabilities: Jefferson Lab Hall B

- Jefferson Lab Hall
 B bremsstrahlung
 photon tagger
 - $E_{\gamma} = 20-95\%$ of E_0
 - E_{γ} up to ~5.5 GeV
 - Circular polarized photons with longitudinally polarized electrons
 - Oriented diamond crystal for linearly polarized photons

Beam asymmetries from ASU/CLAS

Run period g8b (June 20- Sept 1, 2005)

Coherent bremsstrahlung in
 50 μ diamond

Two linear polarization
 states (vertical & horizontal)

Incident electron energy of4.55 GeV

◆ Analytical QED coherent
 bremsstrahlung calculation fit
 to actual spectrum
 (Livingston/Glasgow) ☺

Statistics for g8b

Coherent Edge	Billions of events
 Non-polarized (amorphous) 	2.3
• 1.3 GeV (will show π^0 and π^+)	1.4
◆ 1.5 GeV (will show π^0 and π^+)	2.6
◆ 1.7 GeV (will show π^0 and π^+)	2.2
◆ 1.9 GeV (in progress)	1.2
◆ 2.1 GeV (in progress)	0.9

Fourier moment method

(CLAS Note 2008-35: Dugger and Ritchie,

http://www1.jlab.org/ul/Physics/Hall-B/clas/public/2008-035.pdf)

Simultaneously uses full azimuthal φ acceptance of data set. ⁽²⁾

♦ Only a few (in principle, only 2) histograms per kinematic bin need to be fit. ☺

 ◆ Statistical errors have to be evaluated carefully due to non-vanishing covariances. ⊗

Normalized yields

◆ Define the normalized yield density f^{i,j} for each kinematic bin i,j

$$f^{i,j}(\varphi) \equiv \rho L \int_{E_{i-1}}^{E_i} \int_{\cos\theta_{j-1}}^{\cos\theta_j} \varepsilon(E,\theta,\varphi) \frac{d^3\sigma}{d(\cos\theta)dEd\varphi} d(\cos\theta)dE$$

Integrated normalized densities

$$\left(\frac{Y^{i,j}}{N^{i,j}}\right)_a = \int_0^{2\pi} f_a^{i,j}(\varphi) d\varphi$$

Subscript denotes polarization: $a \leftrightarrow$ unpolarized $\bot \leftrightarrow$ perpendicular $\parallel \leftrightarrow$ parallel

$$\left(\frac{Y^{i,j}}{N^{i,j}}\right)_{\perp} = \int_{0}^{2\pi} f_{\perp}^{i,j}(\varphi) d\varphi = \int_{0}^{2\pi} f_{a}^{i,j}(\varphi) \left[1 + P_{\perp} \Sigma \cos(2\varphi)\right] d\varphi$$
$$\left(\frac{Y^{i,j}}{N^{i,j}}\right)_{\parallel} = \int_{0}^{2\pi} f_{\parallel}^{i,j}(\varphi) d\varphi = \int_{0}^{2\pi} f_{a}^{i,j}(\varphi) \left[1 - P_{\parallel} \Sigma \cos(2\varphi)\right] d\varphi$$

Moments of normalized yields

◆ Expand the *f*^{*i*, *j*} in Fourier series.

$$f_a^{i,j}(\varphi) = a_0 + \sum_{m=1}^{\infty} \left[a_m \cos(m\varphi) + b_m \sin(m\varphi) \right]$$

Find the n^{th} moment for the $f^{i,j}$ (called H_n):

Solving these for Σ

Putting the pieces together, for the *i*,*j* kinematic bin, we find:

$$\Sigma = \left[\frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}}\right] = \frac{2\left(H_{\perp 2} - H_{\parallel 2}\right)}{P_{\parallel}\left(H_{\perp 0} + H_{\perp 4}\right) + P_{\perp}\left(H_{\parallel 0} + H_{\parallel 4}\right)}$$

The H_n histograms are created by weighting each event by cos(nφ) for each i,j kinematic bin.

Fit Example: $\gamma p \rightarrow p X$, where X is identified as π^0

Preliminary Σ results for π^0

Fixed angle – 2 slides

Preliminary Σ results for π^0

Red lines are SAID. Green lines are MAID 18

Preliminary Σ results for π^0

Red lines are SAID. Green lines are MAID 19

Preliminary Σ results for π^+

Fixed angle – 2 slides

Preliminary Σ results for π^+

Red lines are SAID. Green lines are MAID 21

Preliminary Σ results for π^+

Red lines are SAID. Green lines are MAID 22

CLAS generates <u>lots</u> of data on beam asymmetries for pion photoproduction.

Conclusions

✦ World database greatly enhanced during past several years

✦ Preliminary beam asymmetries from CLAS agree fairly well with previous measurements.

✦ Polarization observables from CLAS will be useful in determining between sets of included resonances in theoretical investigations

Acknowledgements

ASU Group Members
B. Ritchie
B. Morrison
E. Pasyuk (Now Jlab)
P. Collins (Now CUA)

CLAS Collaboration

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON DC

